Joint Binary Neural Network for Multi-label Learning with Applications to Emotion Classification
نویسندگان
چکیده
Recently the deep learning techniques have achieved success in multi-label classification due to its automatic representation learning ability and the end-to-end learning framework. Existing deep neural networks in multi-label classification can be divided into two kinds: binary relevance neural network (BRNN) and threshold dependent neural network (TDNN). However, the former needs to train a set of isolate binary networks which ignore dependencies between labels and have heavy computational load, while the latter needs an additional threshold function mechanism to transform the multi-class probabilities to multi-label outputs. In this paper, we propose a joint binary neural network (JBNN), to address these shortcomings. In JBNN, the representation of the text is fed to a set of logistic functions instead of a softmax function, and the multiple binary classifications are carried out synchronously in one neural network framework. Moreover, the relations between labels are captured via training on a joint binary cross entropy (JBCE) loss. To better meet multi-label emotion classification, we further proposed to incorporate the prior label relations into the JBCE loss. The experimental results on the benchmark dataset show that our model performs significantly better than the stateof-the-art multi-label emotion classification methods, in both classification performance and computational efficiency.
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملA novel online multi-label classifier for high-speed streaming data applications
In this paper, a high-speed online neural network classifier based on extreme learning machines for multi-label classification is proposed. In multi-label classification, each of the input data sample belongs to one or more than one of the target labels. The traditional binary and multi-class classification where each sample belongs to only one target class forms the subset of multi-label class...
متن کاملJoint Image Emotion Classification and Distribution Learning via Deep Convolutional Neural Network
Visual sentiment analysis is attracting more and more attention with the increasing tendency to express emotions through visual contents. Recent algorithms in Convolutional Neural Networks (CNNs) considerably advance the emotion classification, which aims to distinguish differences among emotional categories and assigns a single dominant label to each image. However, the task is inherently ambi...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.00891 شماره
صفحات -
تاریخ انتشار 2018